The enticing new title courtesy of Packt Publishing, “Machine Learning with PyTorch and Scikit-Learn,” by Sebastian Raschka, Yuxi (Hayden) Liu, and Vahid Mirjalili is a welcome addition to any data scientist’s list of learning resources. This 2022 tome consists of 741 well-crafted pages designed to provide a comprehensive framework for working in the realm of machine learning and deep learning. The book is brimming with topics that will propel you to a leading-edge understanding of the field.
Book Review: Deep Learning with TensorFlow 2 and Keras
If you’re a data scientist who has been wanting to break into the deep learning realm, here is a great learning resource that can guide you through this journey. It’s pretty much an all-inclusive resource that includes all the popular methodologies upon which deep learning depends: CNNs, RNNs, RL, GANs, and much more. The glue that makes it all work is represented by the two most popular frameworks for deep learning pratcitioners, TensorFlow and Keras.
Book Review: Python Machine Learning – Third Edition by Sebastian Raschka, Vahid Mirjalili
I had been looking for a good book to recommend to my “Introduction to Data Science” classes at UCLA as a text to use once my class completes … sort of the next step after learning the basics. That’s why I was looking forward to reviewing the new 3rd edition of the widely acclaimed title “Python Machine Learning” by Sebastian Raschka, Vahid Mirjalili. The book is a comprehensive guide to machine learning and deep learning with Python. It acts as both a step-by-step tutorial, and a useful resource you’ll keep coming back to as you fill up your data science toolbox.